欧美色五月,男人的天堂久久精品激情,婷婷伊人,久久国产福利,午夜精品久久久久久,欧美激情综合亚洲五月蜜桃

技術(shù)文章您現(xiàn)在的位置:首頁(yè) > 技術(shù)文章 > Broadpharm知識(shí)課堂什么是生物素化?What is Biotinylation?

Broadpharm知識(shí)課堂什么是生物素化?What is Biotinylation?

更新時(shí)間:2024-10-19   點(diǎn)擊次數(shù):405次

生物素(Biotin)為B族維生素之一,又稱(chēng)維生素H、維生素B7、輔酶R(Coenzyme R)等。生物素是一種水溶性維生素,屬于B族維生素的一種。

生物素化,也稱(chēng)為生物素標(biāo)記,是將生物素共價(jià)連接到生物分子(如蛋白質(zhì)、抗體、肽、寡核苷酸和其他大分子)的過(guò)程。該反應(yīng)是快速、特異性的,并且由于生物素體積小 (MW = 244.31) 而不太可能干擾生物分子的自然功能。

生物素與鏈霉親和素和親和素特異性結(jié)合,形成具有強(qiáng)親和力 (Kd, ~ 10-14 mol/L) 和快速接通速率的復(fù)合物。即使在高/低 pH 值、高溫、高鹽濃度等惡劣條件下,復(fù)合物也非常穩(wěn)定。

生物素-親和素和鏈霉親和素系統(tǒng)廣泛用于靶抗原/細(xì)胞的檢測(cè)和分離。這些應(yīng)用包括免疫測(cè)定(ELISA 和 Western 是常規(guī)應(yīng)用)、親和色譜、沉降測(cè)定、超分子構(gòu)建、靶向癌細(xì)胞進(jìn)行藥物遞送等。最近,基于生物素-(strept)親和素相互作用和磁珠的蛋白質(zhì)/細(xì)胞分離的應(yīng)用需求不斷增加。


Broadpharm知識(shí)課堂什么是生物素化?What is Biotinylation?

Biotinylation, also known as biotin labeling, is the process of covalently attaching biotin(s) to biomolecules: such as proteins, antibodies, peptide, oligonucleotide, and other macromolecules. The reaction is rapid, specific and is unlikely to disturb the natural function of the biomolecules due to the small size of biotin (MW = 244.31).

Biotin specifically binds to streptavidin and avidin to form a complex with an extremely high affinity (Kd, ~ 10-14 mol/L) and fast on-rate. The complexes are very stable under even extreme conditions such as high/low pH, high temperature, high salt concentrations, etc.

Biotin-avidin and streptavidin systems are widely used in detection and separation of target antigens/cells. These applications include immunoassays (ELISAs and Westerns being the most popular applications), affinity chromatography, pull-down assays, supramolecular construction, targeting of cancer cells for drug delivery, and many others. Recently, there are increasing application demands for protein/cell separation based on biotin-(strept)avidin interaction and magnetic beads.


Broadpharm知識(shí)課堂什么是生物素化?What is Biotinylation?

Figure 1. biotin labeled antibody binds with streptavidin or avidin (four binding site available, only one is shown to binding to biotin).


Biotinylation Chemistry

For biotinylation chemistry, the most common reactions involve amines with biotin-NHS ester and click chemistry of azide with an alkyne (e.g. DBCO), as shown in Figure 2.


Broadpharm知識(shí)課堂什么是生物素化?What is Biotinylation?
Figure 2. NHS-amine chemistry (A) and click chemistry between azide-DBCO (B).


Biotinylation Reagent in Biotin Labeling

The selection of biotinylation reagent should consider a few factors: target functional group, water solubility, cell membrane permeability, cleavability, and length of the reagent.

The functional groups can be click chemistry reactive, amine reactive, carbonyl reactive, carboxyl reactive, and sulfhydryl reactive (Figure 3). There are also reversible and cleavable biotinylation reagents to help with the specific elution of biotinylated proteins.

Pegylated biotin reagents are particularly attractive due to their water solubility, no toxicity, and low immunogenic properties. Monodispersed PEGs have a well-defined chain length, allowing for specific biotin-based complexes to be designed and studied.


Broadpharm知識(shí)課堂什么是生物素化?What is Biotinylation?
Figure 3. Examples of BroadPharm's Pegylated biotinylation reagent with R 1 and R 2 options for functional groups.


In addition, BroadPharm provides desthiobiotin products for special application, such as affinity purification. Desthiobiotin is a modified form of biotin that binds less tightly to avidin and streptavidin than biotin while still providing excellent specificity. Unlike biomolecules that are labeled with biotin, proteins and other targets labeled with desthiobiotin can be eluted under a soft, mild elute conditions to avoid denaturing the protein of interest.

BroadPharm is a leader of biotinylation reagents that help advance our customer's research, and offers a variety of pegylated and non-pegylated biotinylation reagents to meet your requirement.

Journal Reference:

1. Cull and Schatz, "Biotinylation of proteins in vivo and in vitro using small peptide tags", Methods in Enzymology, 326, (2000): 430-440

2. Minde, et al., "Biotin proximity tagging favours unfolded proteins and enables the study of intrinsically disordered regions", Communications Biology, 3, 38, (2020): 1-13



靶點(diǎn)科技(北京)有限公司

靶點(diǎn)科技(北京)有限公司

地址:中關(guān)村生命科學(xué)園北清創(chuàng)意園2-4樓2層

© 2024 版權(quán)所有:靶點(diǎn)科技(北京)有限公司  備案號(hào):京ICP備18027329號(hào)-2  總訪(fǎng)問(wèn)量:262860  站點(diǎn)地圖  技術(shù)支持:化工儀器網(wǎng)  管理登陸

主站蜘蛛池模板: 久久国产精品一区二区| 69视频网址| 久久青草网站| 国产美女自拍视频| 99在线视频免费| 亚洲国内精品| 色婷婷婷丁香亚洲综合不卡| 免费在线黄视频| 久久精品国产亚洲a| 国产尤物二区三区在线观看 | 天天干人人| 奇米影视888四色首页| 六月丁香伊人| 久久精品网| 精品无码久久久久国产| 国产伦久视频免费观看视频| 成人黄色在线| h免费视频| 2020国产成人精品视频人| 免费一级毛片在线播放视频| 色婷婷激情五月| 日韩1页| 欧美精品自拍| 欧美日韩a| 欧美激情综合网| 欧美久久久久久| 男人手机天堂| 欧美插插视频| 你懂的在线视频观看| 两性视频网站| 老女人网站| 免费精品国产日韩热久久| 美国复古性xxxx| 免费看电影的视频| 免费毛片网站在线观看| 免费看的www视频网站视频| 你懂的免费视频| 女兵人3未删减版在线观看| 你懂的在线视频网站| 欧美人成人亚洲专区中文字幕| 男人天堂网址|